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A liquid helium state equation has been constructed for the range 1.4 to 4 K for 
pressures up to 25 • 105 Pa consistent with the known asymptotic behavior of 
state properties at the lamda line. It utilizes a slightly different form of state 
equation than used in previous studies at the lamba line, resulting in simpler 
expressions for all thermodynamic variables while retaining good agreement 
with experimental data. The amplitude ratio, A/A' ,  of the logarithmic term is 
found to be 1.14 • 0.03, independent of pressure, in contrast to earlier work 
which indicated that this ratio was pressure dependent above 15 • 105 Pa. The 
state equation can also be used to show that the entropy variation along the 
lama line is independent of A or A'  and to predict a finite value of C v at the 
lamda line. 

KEY WORDS: equation of state; helium; lamda line; logarithmic singularity; 
low temperature. 

1. I N T R O D U C T I O N  

Prev ious  studies o f  a symp to t i c  state funct ions  at the 2 line have  genera l ly  

focused  on a n a r r o w  t empera tu re  range  a round  that  line. In this paper  we 

cons t ruc t  a state equa t ion  which  is val id  over  a wide t empera tu re  range  

inc lud ing  the 2 line. This  wide- range  equa t ion  yields a m o r e  comple t e  

descr ip t ion  o f  a sympto t i c  behav io r  at the 2 line and is used here to explore  

cer ta in  features  which  were  not  ev ident  in p rev ious  work.  A l s o  inc luded  in 

the s tudy is a sl ight  va r i a t ion  on the t h e r m o d y n a m i c  fo rmula t ion  used in 

pr ior  analyses ,  leading to a m o r e  succ inc t  and easi ly in tegra ted  state 
equat ion .  

~Electrotechnical Laboratory, 1-1-4 Umezono, Sakura-Mura, Niihari-Gun, Ibaraki 305, 
Japan. 

' Permanent address: National Bureau of Standards, Boulder, Colorado 80303, U.S.A. 

63 

o195-928x/85/OlOO-OO635o4.5o/o �9 1985 Plenum Publishing Corporation 

840/6/1-5 



64 Arp and Agatsuma 

1.1. Previous Data Compilations 

The primary reference for helium I, above 2.5 K, is the work of 
McCarty [1 ], in which diverse experimental data have been synthesized into 
a single state equation. A computer package originally developed by 
McCarty but now enhanced by iterative and approximate subroutines has 
been described by Hands [2] and is now maintained at Oxford by Hands 
and at NBS. More recently McCarty has incorporated his original computer 
package into a larger and more general one for the properties of several 
different fluids [3]. All input data for T/> 2.5 K used in this study have been 
obtained from Ref. 1, and no attempt has been made to refit original 
experimental data. 

Basic references for helium II data are Maynard [4], Brooks and 
Donnelly [5], and McCarty [6]. Maynard's data span the range from 1.2 to 
about 0.05 K below T a, derived primarily from precise sound velocity 
measurements. He gives both numerical equations and tabular data. The 
Brooks and Donnelly data span from 0.1 to about 0.05 K below T~, derived 
from the lattice vibrational spectrum. Only tabular data are presented. 
McCarty [6] synthesized these two data sets into a single computer package 
whose input and output formal is consistent with his for the helium I 
properties [3]. This means that the input variables are density and 
temperature and that iteration is required if other input variables, e.g., 
pressure and temperature, are used. His published report does not include 
thermal expansion data. 

The primary reference for lamda line properties is the work of Ahlers 
[7]. His work includes experimental data and derived properties (specific 
heats, entropy, thermal expansion, and compressibility) in the range 
10-SK~IT-T~I~ 10-2K on either side of the lamda line. He also 
discusses the singularity at the lamda line in considerable detail. It is his 
work which we consider first, as it gives the major input to the form of the 
desired wide-range state equation. 

1.2. Thermodynamic Variables 

Two thermodynamic identities which form the basis of the equations 
developed here are 

c02S 1 {c~Cp ~ [ ~2V~ 

and 

~T~V T \-~V--/r = \~-f- /v  (2) 
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A careful reading of references 4, 5, and 7 discloses that these second-order 
identities are not cited, and apparently are not used, in these respective 
studies. They are central to this work. 

It will be seen that the Grfineisen parameter 

is very useful in analyzing internal consistency and asymptotic features of 
data as the lamda line is approached. It should be noted that this definition 
of r is consistent with that used for many years in studies of lattice 
properties of solids [8, 9]. More recently, the same name has occasionally 
been applied to the parameter 

F = (p/c)(cgc/c~p) s (4) 

in studies of many body problems and helium dynamics in the limit of zero 
temperature. These quantities are conceptually related, but the numerical 
values are different, though always of unity order of magnitude. 

2. BASIC EQUATIONS 

2.1. Logarithmic Singularity at the Lamda Line 

Ahlers has shown that Cp near the lamda line is given by 

Cp = A ( P ) .  log I T -  T~[ + BDE (5) 

where A is a function of pressure, and BDE represents pressure- and 
temperature-dependent terms which remain finite at T a. The magnitudes of 
both A and BDE differ on either side of the lamda line. The empirical 
equations for A (J .  tool - 1 .  K -a) as a function of P (bar) are given by 
Ahlers as 

A : 5.357 - 0.03465 P + 8.447 X 10 -4 p2, T > T~ (6a) 

for helium I and 

A ' =  5 . 1 0 2 -  0.05652P + 9.643 X 1 0 - 4 p  2, T <  T~t (6b) 

for helium II. 
The basic postulate of this work, suggested by the factor of T in Eq. (1), 

is that the logarithmic term in Eq. (5) should be multiplied by T, i.e., a more 
simple equation which fits the data quite well is 

Cp = aTlog  I T -  T~I + TZ' (7) 
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where 27 is a function which remains finite at the lamda line. Evaluating the 
parameter a in Eq. (7) from Eqs. (6a) and (6b) and tabulated values of Ta(P ) 
from Ref. 4, one finds 

a = - 0 . 6 1 ( + 1 % )  J �9 g -1 .  K-2,  T >  Ta (8a) 

for helium I and 

a ' = - 0 . 5 7 ( + 2 % ) J ,  g -1 .  K-2, T <  Ta (8b) 

for helium II, independent of pressure within the error limits shown. The 
exception is that Eq. (8a) does become a function of pressure above 
15 • 10 5 (Pa). The apparently anomalous behavior of helium I above this 
pressure is discussed in some detail by Ahlers. Aside from this high-pressure 
anomaly, it is reasonable that the 1 to 2 % residual variation with pressure in 
Eqs. (8) could be eliminated by a small adjustment of the A and BDE terms. 

The form of Eq. (7) leads to a state equation V(P, T) which is quite 
simple compared to that which would be consistent with Eq. (5). Rewriting 
Eq. (7) to separate pressure-dependent and pressure-independent terms in 22, 
we have 

Cp = aTlog l T -  Tat + TZb(P, T) + T27d(T ) (9) 

where the 27 terms are functions which remain finite at the lamda line, 
defined later�9 Then, from Eq. (1) 

a _ _  

8P O T -  T -  T~ " ~---P + 8P o 
(10) 

- - a - ~ . l o g l r - T ~ [ - f d T  rb  + 27e(P ) (11) 

8T~ 
�9 flog(T-- T a ) -  f dT' f 8 27 V = a - ~  dT--~- b + T27e + St(P) (12) 

8 2 8 8 
- f dT' f d T - ~ S  b + r--~-ff-27e + ~ - S  r (13) 

The functions 27d(T), 27e(e), and 27r(P) are constants of integration, and 

ilog x = f log I xl dx = x(log Ix I - 1) 
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The equations as written here are correct for either sign of T - - Ta .  An 
auxiliary equation for Ta(P ) is required. 

With simple polynomials for P and T in the 22 terms, this set of 
equations turns out to be quite successful in reproducing specific heats, 
thermal expansion, compressibility, (first) sound velocity, and density in the 
reference data and ranges cited above, in both helium I and helium II. 
Numerical details are discussed in a later paragraph. At this point it is 
appropriate to discuss certain features of Eqs. (9)-(13) at the lamda line, 
independent of any particular assignments for the X terms. 

2.2. Entropy Gradient Along the Lamda Line 

The entropy variation along the lamda line is 

a&= +-b-f , a t = - - b T  ,+--r- aP dP 

Substitution from Eqs. (8) and (10) shows that dSa is independent of the 
magnitude of the logarithmic term. More generally, Sa(P ) is independent of 
any function in Eq. (9) whose entire dependence on P and T occurs through 
the arguement [T-- Ta(P)]. 

There has been considerable discussion in the literature whether the 
coefficient A in Eq. (5) is the same on either side of the lamda line. Ahlers 
concludes that A/A'= 1.06, while Elwell and Meyer [10] conclude that 
A/A' = 0.9 (the unprimed coefficients refer to helium I and the primed coef- 
ficients refer to helium II). Whatever may be the true value of this ratio, it 
should not have any effect on the value of Sa(P ). Conversely, if Sa(P) is 
known accurately, this independence of the logarithmic term can be useful in 
the numerical evaluation of the 22 terms. 

2.3. Asymptotic Limits 

If we assume that Eqs. (9)-(13) remain valid for arbitrarily small 
values of AT= I T -  Tal, one can then decrease AT to the point where the 22 
terms are negligible in all equations. To explore the limiting values under this 
condition it is convenient to use a thermodynamic identity involving the 
Gr/ineisen parameter 

c 2 / ( 1  8V) _ Cp (14) 
- ~ = C p  -V" OT p fl 
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where the second equali ty is used to define ft. In the above limit, substi tution 
from Eqs. (9) and ( 1 1 ) y i e l d s  

c 2 OTa 

~ v ~  ~e (15) 

Figure 1 shows a compar ison of  this theoretical  l imit with values determined 
from Ahlers '  da ta  at respectively + 10 -5 K. Order-of-magni tude agreement is 
obtained,  but the limit has not  been obtained.  Nevertheless,  even this approx- 
imate agreement between this limit and Ahlers '  da ta  is p robably  significant 
considering that  the theoretical  l imit is obtained from sound velocity 
measurements,  while the experimental  da ta  are obtained from heat  capacit ies.  

An approximat ion of  the same degree leads to 

Cp Cp caT ( ~e i z (16) 
Cv= I + TflrP ~ T f f ~ - - ~ - \  c3Ta / 

I I 
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Fig. 1. The Grfineisen parameter gl as a function of pressure P. The 
data points are from Ahlers [7] at T a -- T = 10 .5 K. The solid line is 
the asymtotic value given by Eq. (15). 
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for the asymptotic value at the lamda line. A finite value of C v has been 
postulated in past work, e.g., in Ref. 7, but its values has not heretofore been 
calculated. From Eq. (16) the limiting value of Cv/R ranges from 128 at 
saturated vapor pressure to 13 at 25 • 105 Pa pressure. These are far greater 
than any measured value in this region. In order to estimate the extent to 
which A T  must be reduced for this limiting value to be reached, one can 
equate C v from Eq. (16) to Cp from Eq. (7) and solve for AT. Of course this 
calculation will overestimate A T  because the specific heat ratio also becomes 
very large in this limit. The calculated A T  varies from 10-~~176 (!) at 
saturated vapor pressure to "only" 10 -~1 K at 25 • 105 Pa. If nothing else, 
statistical fluctuations from the finite number of atoms in a sample would 
belie these limits. More probably, higher-order divergences and/or 
corrections to the assumed logarithmic divergence must be considered. 

It should be noted that none of these deductions concerning Sa(P ) and 
asymptotic limits at the lamda line is obtained from an equation of state 
starting with Eq. (5). 

2.4. Sealing Laws 

The logarithmic term in Eqs. (5) and (7) is in fact inconsistent with 
accepted scaling laws at a critical point, as pointed out by Ahlers. An 
appropriate generalization of Eq. (7) is 

Cp = a_--~T (I T - zl-" - 1) + TZ (17) 
[ Z  

Equation (7) is obtained from Eq. (17) in the limit that a goes to zero. 
Ahlers states that his data are better fitted by Eq. (5) than by Eq. (17) 
(without the factor of T, in his work) but that an acceptable fit might be 
obtained with a - - - 0 . 0 2 .  This value of a would be in much better 
agreement with universal scaling laws. It should be noted here that none of 
the isentropic or limiting values at the lamda line as derived above is 
changed if one starts with Eq. (17) in place of Eq. (7), provided that a >/0. 

2.5. The Form of  the Z Terms 

To this point the only restriction which has been placed on the Z terms 
is that they remains finite at the lamda line. The constants of integration 2: b, 
Zd, and Zf must each be functions of only one variable; it is reasonable to 
assume that they are analytic and can be represented, for example, by simple 
polynomials in P or T. The •b term, however, can in principle be written 

r~ = z~(P, T) + Z~'[T-- T~(P)] (18) 
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The 27~ contribute to the observed S~(P) and must be analytic in that limit. 
This means that they could be written 

X~ = bijPiT j 

though it is possible that other functional dependencies might be more 
effective. If the 2;" terms were analytic, they could be represented to any 
desired degree of accuracy by the 2;' terms, and the separation into prime 
and double-prime contributions would become redundant. It is reasonable to 
assume that the 2;" terms are nonanalytic at the lamda line. 

Ahlers writes the BDE term of Eq. (5) 

B D E = B .  (T- -T~) log lT- -T: t '+O.  ( r - - T ~ ) + E  (19) 

with B, D, and E as functions of pressure. Thus his B term, neglecting its 
pressure dependence, corresponds to Z", while the D and E terms correspond 
to X'. 

In this work we have tried 

x "  = b,m. i l o g ( T -  T~) + b,2. i21og(T-  Ta) 

ilog(x) was defined earlier, i21og(x) is defined 

i21og(x) = (xE/2)(log Ixl- 3 / 2 ) =  f flog(x)dx 

Different coefficients b N may be assumed on either side of the lamda line 
without affecting the fit to S:t(P) in accordance with the analysis above. 

3. NUMERICAL EVALUATION 

3.1. An Equation for Tx(P) 
Equations (9)-(13) all involve T~(P) and its derivatives. To obtain this 

equation, Kierstead's [11] equation for Pa(T) has been used to generate data 
for a curve-fitting routine. His equation consists of a four-term polynomial 
plus an exponential term which is necessary to represent the marked change 
in 8P/ST which occurs near and below atmospheric pressure. The equation 

T a = K 0 + K 1 n + K 27r 2 + K 37z 3 + K4(1 --  e - 2 ~ )  (20) 

where n- -  1 0 - 6 p  (Pa) reproduces his values of T~t within 0.1 millidegree 
and his derivative ~3Ta/gP with a maximum error of 0.2 %. The constants K i 
are given in Table I. 
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Table I. The Constants K i [Eq. (20)], 
s, [Eq. (21)], and h i [Eq. (22)] a 

K o = 2.17247 
K 1 =-0.117615 
K 2 =-0.0038655 
K 3 2-0.00147339 
K 4 = 0.0138789 

s 1 =-0.210359 
s 2= 0.111850 
s 3 =-0.117229 
s 4 = 0.054780 
s 5 =--0.0088230 

h I = 6.385471 
h z =~).234656 
h 3 =-0.0982606 
h 4 = 0.0755214 
h 5 =-0.0137764 

i 

aThe units for S and H are, respectively, 
j . g l . K - I  and J .g -1 .  

3.2. Least-Squares Procedures 

Two different state equations have been developed for this work, one for 
helium I and one for helium II. Fo r  each equation,  the adjustable  parameters  
were determined by a l inear least-squares fitting to five different physical  
parameters :  Cp, thermal  expansion,  density, isothermal  compressibi l i ty ,  and 
entropy at the l amda  line. The first four parameters  were evaluated at each 
of  approximate ly  100 da ta  points within the pressure and temperature  range 
of  interest. S : ~ ( P )  was evaluated at increments of  105 Pa  over the pressure 
range. Thus a total  of  about  500 da ta  points  are supplied to the least-squares 
fitting routine, which determines op t imum v a l u e s  for 28 adjustable coef- 
ficients. The overall  accuracy of  the fit can be varied by giving different 
weights to these separate  the rmodynamic  components .  In general we have 
given a little lower weight to the thermal  expansion than to other 
components ,  espciaUy where it is small  and difficult to determine from the 
original  experimental  data.  In general terms, the accuracy of  the hel ium II fit 
was 2 % or better, while with the same number  of  adjustable  parameters  the 
helium I fit was only about  5%. It is appropr ia te  to discuss these two 
equations separately.  
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3.3. The Helium II Equation 

There is no indication in Refs. 4 and 5 that Eq. (I) was used in any 
way, e.g., for constructing, testing, or smoothing of their compiled results. 
For this work spot checks were made by simple linear differencing of 

ACp/AP 

and 

A(~V/~T)/AT 

in their tabulated values at several points. Maynard's data passed this test 
very well, exhibiting equality of these factors within about 2%. The Brooks 
and Donnelly data, on the other hand, were thermodynamically inconsistent 
by up to 17%, essentially because of erratic behavior of their thermal 
expansion data (they noted trouble with this parameter in their paper). 
Thermal expansion data are not given in Ref. 6, and it is not apparent 
whether they were used in determining the state equation. On the other hand, 
McCarty presents some evidence for systematic error in Maynard's density 
data. 

For numerical curve fits in this work, only Maynard's data were used. 
The data at 131 different (P, T) points were selected from the tables of 
reference 4, along with all 26 data points in Table VII of Ref. 6. [An 
apparent misprint in the latter data has been corrected: it appears from 
cross-plots that K r for helium I at P =  20 bars and ( T - T a ) =  10-3K 
should be 0.0670 rather than 0.0700 bar-1.] 

3.3.1. Entropy at the Lamda Line 

One of the first questions to be considered was the accuracy of Ahlers' 
data for the entropy along the lamda line. Since his evaluation of this 
quantity utilized specific heat data within 10-2K of Ta, where the 
logarithmic term dominates, a priori suspicion of the result is reasonable 
because Sa(P ) is independent of the logarithmic term. In effect, the 2;' term 
must be separated from the logarithmic and Z"  terms. 

A least-squares fit to Cp, thermal expansion, compressibility, and 
density was obtained. Sa from this fit agreed with that of Ref. 7 to within 
about +0.006 J �9 g -1 .  K-1, after an arbitrary zero shift. In subsequent curve 
fitting, Ahlers' S~t data were included and given reasonable weight. The 
fitting of the helium II data was essentially unaffected, but the helium I was 
aided considerably. One cannot help but admire the precision of Ahlers' 
work in this very narrow temperature range. 

The agreement between the fitted Eqs. (9) to (13) and the input data is 
summarized for each thermodynamic component in Table lI. Complete 
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Table II. The rms Deviation of the Input Data  from the Values Predicted by the Equation of 
State, for Five Different Thermodynamic Parameters and Four Different Equations a 

Helium II Helium I 

P < 17 Full range P > 12 

Percentage error in 
Cp 1.52 3.35 
fl 4.58 7.43 
p 0.12 0.14 
K r 1.69 4.92 

rms absolute error in 
Sa ( J .  g 1 . K - l )  0.0056 0.0057 

Coefficient of 
logarithmic term 
a ( J . g - l . K  2) 

4.49 3.00 
9.03 1.59 
0.22 0.17 
7.96 1.11 

0.0090 0.0032 

--0.5497• -0.62005:0.0102 ~0.6286• -0 .6267+0.0038 

a Also shown is the value of the coefficient a of  the logarithmic term, for each equation. 

numerical results in the form of a computer equation can be obtained from 
the author. The largest source of error was associated with the highest 
temperature datum along each isobar in Ref. 4. These high-temperature 
points were often more than 3 SD from the computed curve. 

The entropy and enthalpy gradients along the 2 line, from this result, 
are given approximately by 

5 

Sa(7~ ) - -Sa(O)= ~ sicr i (21) 
i=1 

5 

Ha(70 -HA(O ) = ~. hilt i (22) 
i = l  

where the coefficients s i and h; are given in Table I and, as before, 7~= 
10-6p (Pa). The equations are not applicable below the saturation vapor 
pressure. 

3.3.2. The Logarithmic Term 

Returning now to the complete set of equations, (9)-(13), we find that 
the coefficient of the logarithmic term, determined from the least-squares fit, 
is 

a = -0 .5497 + 0.0023 J �9 g-~ �9 K - 2  
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in reasonable agreement with Eq. (8b). It is important to note that neither 
this result for the coefficient a nor the predicted Sa(P) is a simple repeat of 
Ahlers calculations in Ref. 7. Using only Maynard's data, i.e., given zero 
weight to Ahler's data, a least-squares fit gave a = - 0 . 5 9  J .  g - 1 .  K-Z. A 
higher correlation between the two data sets is indicated. 

The existing data for the thermal expansion coefficient are approx- 
imately linear with pressure above about 3 X 105 Pa but exhibit a noticeable 
decrease from the linear curve below this pressure. This can be seen, for 
example, in Fig. 2 of Ref. 4. In the present work, this qualitative effect is 
consistent with the decrease in dT~/dP in this same region, plus the fact that 
the logarithmic term is the dominant contribution in Eq. (11). However, the 
decrease in fl at zero pressure predicted by the correlation of Ref. 4 is 
somewhat greater than that predicted here. 

McCarty's suspicion of Maynard's density data was tested by giving 
zero weight to all densities except at P = 1 X 105 and 2 X l0 s Pa (necessary 
to determine integration constants). The resulting fit to the other four ther- 
modynamic components yielded densities in agreement with Maynard's to 
within • Thus we see no strong evidence of systemic error in this 
component alone. However, further comparisons on this point should be 
made. 

3.4. Helium I Equation 

Fitting of the helium I data is complicated by two factors, (1) the 
temperature gap between Ahlers' data at the lamda line and McCarty's data 
above 2.5 K and (2) strong property variations as the liquid-vapor 
equilibrium line is approached, especially at near-critical pressures. Both of 
these constrain the data-fitting procedures. 

Between T~ and 2.5 K there occurs a minimum in Cp, seen in Fig. 2, 
and a change in the sign of the thermal expansion coefficient, seen in Fig. 3. 
This region corresponds approximately to the transition from dominance of 
the logarithmic term, near Ta, to major contributions from the 2; terms, 
above 2.5 K. The fitting of S:~(P) using only the 2;' terms is of great help in 
constraining their behavior below 2.5 K. Nevertheless, it would be a serious 
mistake to use a large number of terms in 2;' just so as to obtain a fine fit at 
the liquid-vapor equilibrium line, especially as the critical pressure is 
approached. The lack of constraint in the Ta to 2.5 K region could lead to 
unrealistic behavior in this transition region. 

After some experimentation, it was decided that the upper limit of the 
fitted temperatures should be 4 K. Temperature up to 4.5 K were included in 
the fitted data but at reduced weight above 4.0 K. Thus, the resulting 
equations are not valid at the liquid-vapor equilibrium line except at subat- 
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Fig. 2. The specific bear Cp as a function of temperature along 
selected isobar from 1.4 to 4.0 K. The maxima in the plotted curves 
correspond to IT Ta]=  10 -5 K. 

mospheric pressure. Even in the latter case the accuracy is somewhat worse 
than the rms deviations listed in Table I. 

Exactly the same form of equations, and the same number of fitted 
constants, was used for the helium I data as had been used for the helium II 
data. The resulting fit for helium I was generally less accurate than for 
helium II, as can be seen in the standard deviations listed in Table II. The 
largest source of error seemingly was associated with the compressibility 
and/or thermal expansion in the approximate range from 5 to 15 times 
atmospheric pressure. It is possible that McCarty 's  compilation [1] deviates 
systematically from Ahlers' data [7] in this region. 

Ahlers discusses an apparent anomaly in the magnitude of the 
logarithmic term in Eq. (5) above 15 • 105 Pa. In the context of this work, 
his observations are equivalent to a pressure-dependent increase in the 
magnitude of the parameter a, Eq. (8a), from -0.61 at P~< 15 • 105 Pa to 
approximately -0 .69  at P = 25 • 105 Pa. For this reason, our initial fitting 
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Fig. 3. The dimensionless thermal expansivity (T/V)(~V/ST)p as a 
function of T from 1.4 to 4.0 K, along selected isobars. The minima 
in the plotted values correspond to I T -  ira[ = 10 5 K. 

was limited to pressures of  1 6 •  10SPa. This fitting yielded a =  
- 0 . 6 2 0 0  • 0.0102 J .  g - l .  K-2 ,  in good agreement with Eq. (8a). Subse- 
quently the data base was enlarged to include pressures up to 25 • 105 Pa. 
The corresponding value of a increased by a statistically insignificant 
amount, to - 0 . 6 2 8 6 •  j . g - l . K - 2 ,  but there was no serious 
degradation of  the fit, as might have been expected. Subsequently, a separate 
fit was made for data from 12 to 25 • 105 Pa. This fit was somewhat more 
accurate than either of  the two earlier fits at lower pressures, as can be seen 
in Table II. The important result, however, is that the coefficient a [Eq. (8a)] 
did not increase as would be expected from Ref. [7] but remained essentially 
unchanged at a = -0 .6267  • 0.0038 J �9 g-X . K - z .  

For pressures up to 15 bars the entropy gradient along the )1. line from 
the wide-range fit is slightly smaller than given by Eq. (21), accumulating to 
an entropy difference o f - 0 . 0 3 3  J �9 g -1  �9 K - a  at that pressure. For pressures 
from 15 to 25 bars, Sa(P  ) -  Sa(15 ) agrees with Eq. (21) to within +0.001 
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j .  g - 1 .  K - 1 .  Similarly, for pressures up to 15 bars the enthalpy gradient 
along the 2 line is slightly smaller than given by Eq. (22), accumulating to 
an enthalpy difference o f - 0 . 0 6 7  J .  g-1 at that pressure. From 15 to 25 
bars, Ha(P)--Ha(15 ) agrees with Eq. (22) to within +0.002 J .  g-1. This 
good agreement between the helium I equation and the helium II equation at 
pressures above 15 bars gives some confidence to our assumption that no 
substantial errors exist in this high pressure range. 

4. SCALING LAWS AND ASYMPTOTIC VALUES 

The important conclusion at this point is that the ratio of the 
logarithmic amplitudes 

a(helium I) 0.6286 + 0.0112 
- = 1.140 • 0.032 

a'(helium II) 0.5497 :l: 0.0023 

is independent of pressure within the above analysis. This pressure indepen- 
dence is expected by scaling laws, at least in their simplest form, but was not 
found by Ahlers from analyses of his narrow-range data. It is appropriate to 
discuss the approach to asymptotic values at the 2 line and the difficulties of 
separating the logarithmetic, ~r, and S "  terms from narrow-range data. 

Figure 4 shows the Gr/ineisen parameter as a function of I T -  Ta] along 
several isobars in both helium I and helium II. Important observations from 
Fig. 4 are as follows. 

(1) In helium II, q~ is a very weak function of temperature, for all 
pressures. The small slope of the curves is consistent with our earlier 
estimate that IT- -Ta[  would have to be reduced to less than 10-11K to 
reach the asymptotic limit [Eq. (15)] for ~. 

(2) In helium I, ~ is a strong function of temperature, changing sign a 
few millidegrees above T a. This change in sign is coincident with a change 
in sign of the thermal expansion coefficient as that point, as required by 
Eq. (14). The rapid temperature variation is a reflection of the rapidly 
changing balance between the logarithmic and the S terms in the state 
functions. 

(3) For pressures below about 15 • 10 5 Pa, ~(helium I)-~ 
�9 (helium II) for I T -  T a ' ~< 10 -5 K, and it appears from the slopes that this 
equality will be maintained as the abscissa is further reduced. 

(4) For pressures above about 15 X 10 5 Pa, ~(helium I) exhibits a 
variable slope even down to [ T - T  a [ =  10 -5, and it appears that the 
abscissa would have to be reduced to 10 -6  or 10-TK in order to achieve 
equality in magnitude and slope with ~(helium II). 
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The Gr/ineisen parameter ~ as a function of I T- -  Ta(p) I along 
selected isobars. The data points are from Ahlers [7]. 

The conclusion from the curves is that strong and opposite temperature 
dependences of, respectively, the logarithmic and 2] terms are found in 
helium I as the 2 line is approached, especially at higher pressures. As a 
consequence, more than just the D and E terms of  Eq. (19) may be required 
to secure an accurate asymptotic representations of the analytic terms for 
helium I out to 10 -2 K, especially for pressures about 15 bars. It might be a 
very difficult problem to separate higher-order analytic terms from the 
nonanalytic B term when data are available only out to T =  10 -2 K. 

On the other hand, the accuracy of  Ahlers'  data-fitting was generally 
superior to that obtained in this work, especially for helium I. Thus, the 
discrepancy between his results and ours remains unresolved at this time. 
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5. A SINGLE EQUATION FOR 1.4 K < T < 4 K 

It has been shown that Sa(P) depends only on analytic terms Z which 
contain no explicit reference to the X line. Thus, nothing in the analyses to 
this point requires that Z '  be any different in helium I than in helium II. 
Further, a hint of  continuity in ~r, across the X line is seen in Fig. 5, where 
the velocity of  sound is plotted on isobars from 1 to 4 K. From this figure 
one could easily accept a model in which c is the sum of a dominant, 
continuous function minus a small X-like perturbation of  peak magnitude 
~13  m �9 s -1, centered at the 2 line. On the other hand, an awkward offset in 
the "continuous" function does become noticable at higher pressures. 
Perhaps this offset is related to the difficulties in fitting the compressibility of  
helium I, as mentioned above. 

From these considerations an attempt was made to fit the complete 
range of  data from 1.4 to 4.0 K using a single set of  terms for Z ' .  This 

"T r 

E 

I- 

0 
.,..I 
UJ 

a 
z 
::3 
0 
rl) 

400 l I I I r I 

360 ~_...~ p= 2.5 M P a ~ _ . . ~  

3 2 0 ~ / ~  " ~ ' ~  

280 - 

240 

200 I I I 
1.6 2.0 2.4 2.8 3.2 3.6 4 .0  

T E M P E R A T U R E ,  K 

Fig. 5. The velocity of sound as a function of temperature from 1.4 
to 4.0 K, along selected isobars. The discontinuities at the 2 line are 
most probably due to unnaccuracies in the helium I state equation. 
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attempt was totally unsuccessful, using just the logarithmic and 22" terms as 
outlined here. Perhaps it could be made to work if a larger set of 22" terms 
were included in the fitting. On the other hand, the magnitudes of the 22' 
terms are much different on either side of the 2 line when the individual 
helium I and helium II fits are compared. This work was not pursued further. 

6. I N F L U E N C E  OF THE LOG TERM ON PROPERTIES FAR FROM 

One of the interesting questions which we can now answer is the extent 
to which the logarithmic terms, required at the lamda line, contribute to the 
observed properties far from that line. In helium II, over the range of 
Maynard's data, the logarithmic term contributes 75 tp 90% of the specific 
heat and about 90 % of the thermal expansion but less than about 5 % of the 
compressibility. This result suggests that the logarithmic term should be 
included in any wide-range equation of state for helium II. Further, the 
known change in sign of OV/c3T at about 1 K would correlate approximately 
with the change in sign of the logarithm term above and below T~ - T = 1. 
Small differences would be accomodated by the 22 terms. However, in this 
work the equations have not been extended below 1.4 K. 

In helium I the logarithmic term contributes essentially the total specific 
heat up to 2.3 K and then drops rapidly to a small fraction. The thermal 
expansion changes sign a few millidegrees above T~ where the logarithmic 
and 22 terms are equal and opposite, and order-of-magnitude equality of these 
terms persists to the upper temperature bound. Thus, the presence of the 
logarithmic term seriously perturbs the state functions above 3 K. The 
situation is comparable to the problem of creating a nonanalytic state 
equation valid at the critical point. In both cases the terms required for 
accurate description at the nonanalytic point (2 line or critical point) cause 
problems far from that point. Attempts have been made to introduce 
empirical terms to cut off the nonanalytic terms far from the critical point 
but without notable success. No such attempts have been made in this work. 

7. D E N S I T Y - T E M P E R A T U R E  COORDINATES 

All of the work reported here is based upon integration of Eq. (1) with 
P and T as independent coordinates. An alternative approach would be to 
integrate Eq. (2) with V and T as independent coodinates. Ahlers has shown 
that his specific heat data may be expressed as 

Cv = A ( I T ) l o g l T -  T~t(V)I + BDE (23) 
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where, as before, A is a function of P and BDE represents terms which 
remain finite at T~. The fitting of his data to Eq. (23) shows residual 
deviations of 1 to 2% which are absent from his fitting to Eq. (5). 
Nevertheless, his observation offers the hope that an equation of the form 

C v = ATlog I T -  T~(V)] + T,Y, (24) 

might be reasonably successful in correlating wide-range data. The subse- 
quent equations would be formally identical with Eqs. (9)-(13), but with P 
and V interchanged along with certain minus signs. The set of state 
equations would then be consistent with the usual state equations based upon 
density and temperature as independent coordinates. We have not performed 
this analysis. 

8. C O N C L U S I O N S  

The equation of state V(P,T) given by Eq.(12), with simple 
polynomials for S '  and 2]", has been shown to represent helium properties 
from 1.4 to 4.0 K, up to 25 • l0 s Pa, with an accuracy of 5 % or better. The 
form of the equation allows simple evaluation of asymptotic fluid properties 
at the 2 line, along with the observation that S~(P) is independent of the 
logarithmic term. The calculated amplitude amplitude ratio A/A'= 1.14 is 
independent of pressure as required by the simplest form of universal scaling 
laws. A computer equation giving full numerical results is available from the 
author. 

This work can be enlarged in several ways: (1) The helium II data base 
should be expanded to include Ref. 5, with temperatures down to 0.1 K. (2) 
It would be technologically useful to extend the helium I range to include the 
saturated liquid and, if possible, the near-critical fluid. (3) Second-sound 
velocities and two-fluid-model densities should be included in the helium II 
equation. (4) An equation of the form P(V, T), based upon Eqs. (24) and (2), 
should be constructed and tested for numerical accuracy. 

A C K N O W L E D G M E N T S  

This work was completed while V. Arp was a guest worker at the Elec- 
trotechnical Laboratory, sponsored by the Science and Technology Agency 
of Japan. The opportunity to work in a stimulating environment undisturbed 
by the normal miscellany of administrative procedures is gratefully 
acknowledged. The unstinting support of Drs. I. Todoriki, H. Koyama, H. 
Kaiho, and many others at ETL has been freely given. The patient assistance 
of T. Ohara in many aspects of computer work, often at the expense of his 
own work, has been invaluable. 



82 Arp and Agatsuma 

REFERENCES 

1. R. D. McCarty, NBS Technical Note 631 (1972). 
2. B. A. Hands, Cryogenics 13:423 (1973). 
3. R. D. McCarty, NBS Technical Note 1025 (1980). 
4. J. Maynard, Phys. Rev. B14:3868 (1976). 
5. J. S. Brooks and R. J. Donnelly, J. Phys. Chem. Ref. Data 6:51 (1977). 
6. R. D. McCarty, NBS Technical Note 1029 (1982). 
7. G. Ahlers, Phys. Rev. A8:530 (1973). 
8. V. Arp, Cryogenics 15:285 (1975). 
9. V. Arp, ASME J. Fluids 106:193 (1984). 

10. D. L. Elwell and H. Meyer, Phys. Rev. 164:245 (1967). 
11. H. A. Kierstead, Phys. Rev. 126:153 (1967). 


